2009年4月12日星期日

WTF: Multi-protocol Label-switching(MPLS)

ref:
http://en.wikipedia.org/wiki/MPLS
http://www.networkdictionary.cn/?q=protocols/mpls.php
http://www.hudong.com/wiki/MPLS

In computer networking and telecommunications, Multiprotocol Label Switching (MPLS) refers to a highly scalable, protocol agnostic, data-carrying mechanism. In an MPLS network, data packets are assigned labels. Packet-forwarding decisions are made solely on the contents of this label, without the need to examine the packet itself. This allows one to create end-to-end circuits across any type of transport medium, using any protocol. The primary benefit is to eliminate dependence on a particular Data Link Layer technology, such as ATM, frame relay, SONET or Ethernet, and eliminate the need for multiple Layer 2 networks to satisfy different types of traffic. MPLS belongs to the family of packet-switched networks.
MPLS operates at an OSI Model layer that is generally considered to lie between traditional definitions of Layer 2 (Data Link Layer) and Layer 3 (Network Layer), and thus is often referred to as a "Layer 2.5" protocol. It was designed to provide a unified data-carrying service for both circuit-based clients and packet-switching clients which provide a datagram service model. It can be used to carry many different kinds of traffic, including IP packets, as well as native ATM, SONET, and Ethernet frames.
A number of different technologies were previously deployed with essentially identical goals, such as frame relay and ATM. MPLS technologies have evolved with the strengths and weaknesses of ATM in mind. Many network engineers agree that ATM should be replaced with a protocol that requires less overhead, while providing connection-oriented services for variable-length frames. MPLS is currently replacing some of these technologies in the marketplace. It is highly possible that MPLS will completely replace these technologies in the future, thus aligning these technologies with current and future technology needs.[1]
In particular, MPLS dispenses with the cell-switching and signaling-protocol baggage of ATM. MPLS recognizes that small ATM cells are not needed in the core of modern networks, since modern optical networks (as of 2008) are so fast (at 40 Gbit/s and beyond) that even full-length 1500 byte packets do not incur significant real-time queuing delays (the need to reduce such delays — e.g., to support voice traffic — was the motivation for the cell nature of ATM).
At the same time, MPLS attempts to preserve the traffic engineering and out-of-band control that made frame relay and ATM attractive for deploying large-scale networks.
While the traffic management benefits of migrating to MPLS are quite valuable (better reliability, increased performance), there is a significant loss of visibility and access into the MPLS cloud for IT departments.[


多协议标签交换(MPLS)是一种用于快速数据包交换和路由的体系,它为网络数据流量提供了目标、路由、转发和交换等能力。更特殊的是,它具有管理各种不同形式通信流的机制。MPLS 独立于第二和第三层协议,诸如 ATM 和 IP。它提供了一种方式,将 IP 地址映射为简单的具有固定长度的标签,用于不同的包转发和包交换技术。它是现有路由和交换协议的接口,如 IP、ATM、帧中继、资源预留协议(RSVP)、开放最短路径优先(OSRF)等等。

在 MPLS 中,数据传输发生在标签交换路径(LSP)上。LSP 是每一个沿着从源端到终端的路径上的结点的标签序列。现今使用着一些标签分发协议,如标签分发协议(LDP)、RSVP 或者建于路由协议之上的一些协议,如边界网关协议(BGP)及 OSPF。因为固定长度标签被插入每一个包或信元的开始处,并且可被硬件用来在两个链接间快速交换包,所以使数据的快速交换成为可能。

MPLS 主要设计来解决网路问题,如网路速度、可扩展性、服务质量(QoS)管理以及流量工程,同时也为下一代 IP 中枢网络解决宽带管理及服务请求等问题

没有评论:

发表评论